
▪ The webinar starts at 2:00 pm Basel Time
8:00 am East Coast Time

▪ Everyone is placed on mute during the webinar

▪ Webinar material (including presentation) can be downloaded here:

▪ The webinar will be recorded
▪ Recording will be made available on the following link:

▪ Recording available ~1 day after the webinar

https://training.intiquan.com/MIDDmodules/M2.2.zip

https://training.intiquan.com/MIDDmodules/M2.2.mp4

1. Background

2. NLME Project definition explained

3. Examples

4. Special elements

5. Conclusions

6. Outlook webinar modules

7. Q&A

7

IQRnlmeEst() IQRnlmeProject() run_IQRnlmeProject()

NLME tool
INDEPENDENT

specification of the
NLME problem

IQRtools
Estimation

Object

Automatic generation
NLME tool

DEPENDENT
control files

NLME tool
INDEPENDENT
formatting and
presentation of

results

Results,
Diagnostics

&
Tables

IQR Tools Output

IQR Tools functions:

Model
Structure

Data

Model
Spec

Dosing

User Input

Module 1.1

Module 2.1

Todays Module

Todays Module

▪ You will have seen examples on how to

✓ Easily setup NLME parameter estimations based on

✓ A dataset (see Module 2.1)

✓ A structural model (see Module 1.1)

✓ A flexible and powerful description of the error model, statistical model,

covariate model, etc.

✓ Automatic conversion to NONMEM, MONOLIX, and NLMIXR projects

✓ Execution of the NLME parameter estimation

✓ Automatic post-processing of results

✓ Comparison of any desired models

✓ Generation of model development tables

✓ Easy access to all generated output tables

▪ Giving you the possibility to define own models and perform own

parameter estimations

▪ The Webinar material is available as a convenient download

▪ After installation of IQR Tools, simply type the following

▪ Or download directly from:

library(IQRtools)
install_MIDDmodule(“2.2")

https://training.intiquan.com/MIDDmodules/M2.2.zip

Convenient setup of IQR Tools options, including interfacing with NONMEM and

MONOLIX on the system through the IQR Tools options setup:

Parallel NONMEM runs handled by IQR Tools as well – can be set up in options as well.

Requires a shell/batch script available on systems command line with the following calling syntax:

command NRCORES controlfile outputfile

▪ Web based demo server: http://iqdesktop.intiquan.com:5000

▪ Can be used freely – on a first come first serve basis

▪ Fully functional (bring your own license for NONMEM and/or MONOLIX)

▪ Local installation easy

▪ Windows installation video:

▪ Installation guide

▪ Windows

▪ macOS

▪ Linux

https://iqdesktop.intiquan.com/doc/IQDesktop_Installation_Windows.mp4

http://iqdesktop.intiquan.com/
https://iqdesktop.intiquan.com/book/installation.html#windows
https://iqdesktop.intiquan.com/book/installation.html#macos
https://iqdesktop.intiquan.com/book/installation.html#linux
https://iqdesktop.intiquan.com/doc/IQDesktop_Installation_Windows.mp4

▪ An IQRmodel in the syntax defined in Module 1.1 defines the structural

model to be used for NLME parameter estimation

▪ INPUT1-INPUTn identifiers link model to dosing records in the dataset

▪ OUTPUT1-OUTPUTn identifiers link model to observation records in the dataset

Load structural model based on IQRmodel syntax
model <- IQRmodel("example_1_model.txt")

********** MODEL STATES
d/dt(Ad) = -ka*Ad + INPUT1
d/dt(Ac) = ka*Ad - CL/Vc*Ac

********** MODEL PARAMETERS
ka = 1 # Absorption rate parameter (1/hours)
CL = 3 # Apparent clearance (L/hours)
Vc = 60 # Apparent central volume (L)

********** MODEL VARIABLES
Calculate plasma concentration in ug/mL
Cc = Ac/Vc
Assign output variable for matching with dataset
OUTPUT1 = Cc # Plasma concentration

example_1_model.txt

example_1.R

▪ Data is defined by:

▪ datafile: Path to an NLME dataset or a corresponding data.frame (see Module 2.1) - required

▪ covNames / catNames: Vectors of column names in dataset to consider as candidate

continuous / categorical covariates - optional (default: NULL)

▪ regressorNames: Vector of model parameter names used as regressors and defined in the

dataset (default: NULL)

OPTION 1: Define dataset by path
data <- data_IQRest(
datafile = "example_1_data.csv",
covNames = c("WT0"),
catNames = c("SEX"),
regressorNames = NULL

)

OPTION 2: Define dataset by data.frame
dataset <- IQRloadCSVdata("example_1_data.csv")

data <- data_IQRest(
datafile = dataset,
covNames = c("WT0"),
catNames = c("SEX"),
regressorNames = NULL

)

example_1.R

Uses data as define in

previously generated

modeling dataset

(suggested for regulatory

modeling)

Allows ad-hoc

modifications of the

data (good for

exploratory use)

▪ Some information related to the dosing needs to be provided for each input

present in the model.

example_1.R

Define dosing
dosing <- dosing_IQRest(
INPUT1 = c(type="BOLUS",Tlag="Tlag1")

)

▪ => List with all INPUTs in the model

▪ Value of list entries is a vector with 3 possible named arguments

▪ type: String with "BOLUS", "INFUSION", "ABSORPTION0"

▪ "BOLUS" and "INFUSION" can be used interchangeably as administration time driven by
the TINF column in the dataset (INFUSION with TINF=0 => BOLUS)

▪ Tlag: String with name of Tlag parameter in the model

▪ Can be left undefined if no lag time to be considered (by default lag time=0)

▪ If lag time should be considered for estimation, then it has to be defined here

▪ Tk0: String with 0-order absorption time parameter in the model

▪ Only to be defined if type="ABSORPION0"

▪ In case of type="ABSORPION0" the absorption time is estimated and not taken from the
dataset

▪ Parameter for 0 order absorption time needs to be coded in the MODEL PARAMETERS
section in the model

Define dosing
dosing <- dosing_IQRest(
INPUT1 = c(type="BOLUS"),
INPUT2 = c(type="BOLUS",Tlag="Tlag1"),
INPUT3 = c(type="INFUSION"),
INPUT4 = c(type="INFUSION",Tlag="Tlag1"),
INPUT5 = c(type="ABSORPTION0",Tk0="TK05"),
INPUT6 = c(type="ABSORPTION0",Tk0="TK06",Tlag="Tlag6"),
...
)

▪ Define the statistical and residual error model

Define model specification
modelSpec <- modelSpec_IQRest(
Define initial guesses for fixed effects
And names of parameters to be considered for estimation
POPvalues0 = c(ka=1, CL=1, Vc=10),

Define if fixed effect is estimated or not
POPestimate = c(ka=1, CL=1, Vc=1),

Define the distribution of the individual parameters
IIVdistribution = c(ka="L", CL="L", Vc="L"),

Define initial guesses for the random effects
IIVvalues0 = c(ka=0.5, CL=0.5, Vc=0.5),

Define if random effect is estimated or not
IIVestimate = c(ka=1, CL=1, Vc=1),

Define error model
errorModel = list(
OUTPUT1 = c("abs",0.3)

)
)

example_1.R

Required

Optional

There are many more optional arguments – which we will see in Module 2.

▪ POPvalues0 entry required

▪ Defining the model parameters to be considered for estimation

▪ Other parameters that are present in the model will be kept on the values defined

in the model

▪ Vector with named entries - names corresponding to parameter names

▪ Values represent initial guesses for the fixed effects

Define model specification
modelSpec <- modelSpec_IQRest(
Define initial guesses for fixed effects
And names of parameters to be considered for estimation
POPvalues0 = c(ka=1, CL=1, Vc=10)

)
example_1.R

▪ POPestimate entry optional

▪ Defining the fixed effects that are estimated or kept fixed

▪ Vector with named entries - names corresponding to parameter names

▪ Values:

▪ 0: keep parameter fixed on initial guess

▪ 1: estimate parameter

▪ Default if not provided: 1 (estimated)

Define model specification
modelSpec <- modelSpec_IQRest(
...
Define if fixed effect is estimated or not
1: estimate it,
0: keep it fixed on initial guess
POPestimate = c(ka=0, CL=1, Vc=1),

...
) example_1.R

▪ IIVdistribution entry optional

▪ Defining the individual parameter distributions

▪ Vector with named entries - names corresponding to parameter names

▪ Values:

▪ "N": Normal distribution

▪ "L": Log-Normal distribution

▪ "G": Logit-Normal distribution

▪ Default if not provided: "L"

Define model specification
modelSpec <- modelSpec_IQRest(
...
Define the distribution of the individual parameters
N: normally distributed (positive and negative values possible)
L: log-normally distributed (positive values only)
G: logit-normally distributed (between 0 and 1 only)
IIVdistribution = c(ka="L", CL="N", Vc="G"),

...
)

example_1.R

▪ IIVvalues0 entry optional

▪ Defining the initial conditions for the random effects

▪ Vector with named entries - names corresponding to parameter names

▪ Values:

▪ Initial guesses for the standard deviation of the random effects

▪ Default if not provided: 0.5

Define model specification
modelSpec <- modelSpec_IQRest(
...
Define initial guesses for the random effects (standard deviation)
IIVvalues0 = c(ka=0.5, CL=0.5, Vc=0.5),

...
)

example_1.R

▪ IIVestimate entry optional

▪ Defining the random effects that are estimated or kept fixed

▪ Vector with named entries - names corresponding to parameter names

▪ Values:

▪ 0: no random effect on parameter (independent on value set in IIVvalues0)

▪ 1: estimate parameter

▪ 2: keep parameter fixed on initial guess

▪ Default if not provided: 1 (estimated)

Define model specification
modelSpec <- modelSpec_IQRest(
...
Define if random effect is estimated or not
1: estimate it,
2: keep it fixed on initial guess,
0: no random effect (independent of IIVvalues0 setting)
IIVestimate = c(ka=0, CL=1, Vc=2),

...
)

example_1.R

▪ errorModel entry optional

▪ Defining the residual error model to be used on each OUTPUT

▪ List with named entries - names corresponding to OUTPUT names

▪ Values: vectors with 2-3 elements

▪ c("abs",0.3) - additive error with initial guess of standard deviation

▪ c("rel",0.5) - proportional error with initial guess of standard deviation

▪ c("absrel",0.3,1) - additive/proportional error with initial guesses of standard
deviation for add/prop part

▪ Default: absolute error model

Define model specification
modelSpec <- modelSpec_IQRest(
...
Define error model - 3 options available
OUTPUT1 = c("abs",0.3) - additive with initial guess of sd
OUTPUT1 = c("rel",1) - proportional with initial guess of sd
OUTPUT1 = c("absrel",0.3,1) - additive-proportional with add/prop guess
errorModel = list(
OUTPUT1 = c("abs",0.3)

)
...
)

example_1.R

▪ More optional settings are available

▪ These will be covered later

▪ Detailed documentation available

in the R help functionality

▪ Two step approach

▪ Step 1: Combine model, data, dosing, and model specification

into an "estimation object" - which still is estimation tool

independent

▪ Step 2: Convert the estimation object in an "NLME Project" that is tool

dependent. Currently supported tools: NONMEM, MONOLIX, NLMIXR (V1)

Generate estimation object (tool independent)
est <- IQRnlmeEst(model,dosing,data,modelSpec)

Generate models in NLMIXR, NONMEM, MONOLIX (tool dependent)
IQRnlmeProject(
est,
projectPath = "Models/MODEL_01_NONMEM",
tool = "NONMEM",
comment="NONMEM - no lag time, add error, no covariates"

)

example_1.R

Binding information together in an

estimation object. This step also serves

to check consistency of provided

information

Converts an estimation object into a tool

dependent project. Allows control over

tool dependent settings, algorithms

NONMEM
IQRnlmeProject(
est,
projectPath = "Models/MODEL_01_NONMEM",
tool = "NONMEM",

)

MONOLIX
IQRnlmeProject(
est,
projectPath = "Models/MODEL_01_MONOLIX",
tool = "MONOLIX",

)

NLMIXR
IQRnlmeProject(
est,
projectPath = "Models/MODEL_01_NLMIXR",
tool = "NLMIXR",

)

▪ Different parameter estimation tools (NONMEM,

MONOLIX, NLMIXR) handled by defining the name

of the tools

▪ And potentially (as needed) tool dependent options

example_1.R

▪ Detailed documentation

available ...

▪ We will use several of these

different arguments during the

examples

▪ An IQRnlmeProject is a folder, containing

▪ The generated NONMEM (or MONOLIX or NLMIXR) control file

▪ The structural IQRmodel

▪ And additional information for book-keeping

Empty upon generation. Will be filled with

content after running of the models

▪ IQRnlmeProjects can be executed

▪ run_IQRnlmeProject

▪ Executes the parameter estimation

▪ Post-processes the results in a standard format

Run the generated NONMEM model
run_IQRnlmeProject("Models/MODEL_01_NONMEM")
run_IQRnlmeProject("Models/MODEL_01_MONOLIX")
run_IQRnlmeProject("Models/MODEL_01_NLMIXR")

example_1.R

▪ Standard Tool dependent output (RESULTSORIG)

▪ Post-processed outputs

▪ Parameter estimates table

▪ Post-processed outputs

▪ Full set of standard diagnostics

▪ General (folder GOF_GENERAL)

▪ One folder per observable (here only 1: GOF_OUTPUT_1_Cc)

▪ CSV files with standard output

▪ Individual parameters

▪ Random effects

▪ Predictions, etc.

Content of RESULTS folder is independent of estimation tool

▪ Easy setup and execution of NLME parameter estimation problems

▪ Automatic post-processing of results allows direct assessment of results to

inform the subsequent modeling steps

▪ Encapsulation of NLME estimation problems in single folders (NLME

Projects) allows structured storage

▪ Easy switching between tools (NONMEM, MONOLIX, NLMIXR) - no expert

knowledge in setting up NONMEM control streams or MONOLIX MLXTRAN

files required

▪ => Focus on expertise in NLME modeling, rather than in NONMEM or

MONOLIX

▪ All modeling follows the same approach - the difference being only in the

settings (structural model, data, dosing, model specification)

▪ Basic 1 compartment PK model with 1st order absorption

▪ No lag time

▪ Additive residual error model

▪ No covariates

▪ Consideration of NONMEM, MONOLIX, NLMIXR

▪ Code shown and discussed in previous section

▪ Basic 1 compartment PK model with 1st order absorption

▪ Estimation of lag time

▪ Additive-proportional residual error model

▪ No covariates
Define dosing
If lag time desired to be estimated/fixed in the model
then for each INPUTn with lag time the lag time parameter
name needs to be defined
dosing <- dosing_IQRest(
INPUT1 = c(type="BOLUS",Tlag="Tlag1")

)

Define model specification
modelSpec <- modelSpec_IQRest(
POPvalues0 = c(ka=1, CL=1, Vc=10, Tlag1=0.1),
POPestimate = c(ka=1, CL=1, Vc=1, Tlag1=1),

IIVdistribution = c(ka="L", CL="L", Vc="L", Tlag1="L"),

IIVvalues0 = c(ka=0.5, CL=0.5, Vc=0.5, Tlag1=0.5),
IIVestimate = c(ka=1, CL=1, Vc=1, Tlag1=1),

errorModel = list(
OUTPUT1 = c("absrel",1,0.3)

)
)

example_2.R

▪ Basic 1 compartment PK model with 0 order absorption into central

compartment

▪ Estimation of lag time

▪ Estimation of 0-order absorption time

▪ Proportional residual error model

▪ No covariates

********** MODEL STATES
d/dt(Ac) = - CL/Vc*Ac + INPUT1

********** MODEL PARAMETERS
Tk0 = 1 # 0-order absorption time (hours)
CL = 3 # Apparent clearance (L/hours)
Vc = 60 # Apparent central volume (L)

Define dosing
In the case of 0-order absorption through a selected INPUTn,
the name of the model parameter representing the absorption time
needs to be defined. The parameter has to be defined in the IQRmodel file.
dosing <- dosing_IQRest(
INPUT1 = c(type="ABSORPTION0",Tlag="Tlag1",Tk0="Tk0")

)

Define model specification
modelSpec <- modelSpec_IQRest(
POPvalues0 = c(Tk0=1, CL=1, Vc=10, Tlag1=0.1),
POPestimate = c(Tk0=1, CL=1, Vc=1, Tlag1=1),
IIVdistribution = c(Tk0="L", CL="L", Vc="L", Tlag1="L"),
IIVvalues0 = c(Tk0=0.5, CL=0.5, Vc=0.5, Tlag1=0.5),
IIVestimate = c(Tk0=1, CL=1, Vc=1, Tlag1=1),
errorModel = list(
OUTPUT1 = c("rel",0.3)

)
)

example_3.R

example_3_model.txt

▪ IOV only supported with IQR Tools through NONMEM

▪ Requires an OCC column in the dataset

example_4/Data/dataNLME.csv

▪ 2 compartmental distribution model with IV infusion

▪ Consideration of IOV

▪ Parallel execution of NONMEM run

Define model specification - including IOV information
modelSpec <- modelSpec_IQRest(
POPvalues0 = c(CL=0.5, Vc=3, Q1=0.5, Vp1=3),
POPestimate = c(CL=1, Vc=1, Q1=1, Vp1=1),

IIVdistribution = c(CL="L", Vc="L", Q1="L", Vp1="L"),

IIVvalues0 = c(CL=0.3, Vc=0.3, Q1=0.3, Vp1=0.3),
IIVestimate = c(CL=1, Vc=1, Q1=2, Vp1=1),

Define initial guesses for IOV standard deviation
Distribution of IOV same as for IIV
IOVvalues0 = c(CL=0, Vc=0.2, Q1=0, Vp1=0.6),

Define if IOV is estimated
1: estimate it,
2: keep it fixed on initial guess,
0: no IOV random effect (independent of IOVvalues0 setting)
IOVestimate = c(CL=1, Vc=1, Q1=1, Vp1=1),

errorModel = list(
OUTPUT1 = c("rel",0.3)

)
)

example_4.R
Run NONMEM model with IOV
run_IQRnlmeProject("Models/MODEL_04",Nparallel = 4)

▪ 2 compartmental

distribution

model with first

order absorption

▪ Definition of

covariates

(using default

initial guesses and

centering)

Model specification
modelSpec1 <- modelSpec_IQRest(

Typical subject parameters
POPvalues0 = c(kabs = 0.25, CL = 30, Vc = 30, Q1 = 25, Vp1 = 2300),
POPestimate = c(kabs = 1 , CL = 1 , Vc = 1, Q1 = 1, Vp1 = 1),

Between subject variability
IIVdistribution = c(kabs ="L" , CL ="L" , Vc ="L" , Q1 ="L" , Vp1 ="L"),
IIVvalues0 = c(kabs = 0.5, CL = 0.5, Vc = 0.5, Q1 = 0.5, Vp1 = 0.5),
IIVestimate = c(kabs = 1 , CL = 1 , Vc = 1 , Q1 = 1 , Vp1 = 1),

Covariate model
Defined by a list with named elements.
- names are the parameters on which to add covariates
- values are vectors with names of the candidate covariates
- IQR Tools implements:
- Continuous covariates by standard power functions: *(cov/REF)^beta
- Default reference value REF: median in the dataset
- Categorical covariates: *exp(betaX*(cat=categoryX))
- Default reference category: smallest numerical category in cat
- Use of MU referencing limits options for covariate implementation
- It is always possible to code covariate relationships also directly
into the structural model - but with SAEM care should be taken - e.g.
a covariate coefficient then benefits from variability (fixed) based on
convergence considerations.
covariateModel = list(

kabs = c("AGE","SEX"),
CL = c("SEX","WT0"),
Vc = c("SEX")

),

Error model
errorModel = list(OUTPUT1 = c(type="rel", rel0 = 0.2))

)

Data
data <- data_IQRest(

datafile = "Data/data.csv",
covNames = c("HT0", "WT0", "AGE"),
catNames = c("SEX")

)

example_5.R

▪ Let's look at the output in the RESULTS folder

▪ 2 compartmental

distribution

model with first

order absorption

▪ Definition of

covariates

▪ Initial guesses

▪ Estimation/fixed

▪ Centering of covariates

Covariate model
covariateModel = list(

kabs = c("AGE","SEX"),
CL = c("SEX","WT0"),
Vc = c("SEX")

),

Covariate coefficient values

Initial guesses for covariate coefficients can be provided in the
following manner. In case of multi-level categorical covariates
the same value will be used as starting guess for all levels different
from reference.
covariateModelValues = list(

kabs = c("AGE"=0.1,"SEX"=2),
CL = c("SEX"=2,"WT0"=0.75),
Vc = c("SEX"=0.3)

),

Covariate coefficient estimation settings

Value of 1 means the coefficient is estimated.
Value of 0 means the coefficient is fixed.
COVestimate = list(

kabs = c("AGE"=0,"SEX"=1),
CL = c("SEX"=1,"WT0"=0),
Vc = c("SEX"=1)

),

Covariate centering

Continuous ovariates can be centered around a defined value
Categorical covariates can have a defined reference value
Continuous covariates that are not centered in this manner will
be centered around the median in the dataset
Categorical covariates that are not centered in this manner will
obtain the smallest category value as reference value
COVcentering = c("WTKG"=70, SEX=1),example_6.R

▪ 2 compartmental

distribution

model with first

order absorption

▪ Estimation of

correlation of

random effects

▪ 3 examples included

with different settings

Model specification
modelSpec1 <- modelSpec_IQRest(

...

Covariance model
This example will estimate the correlation between random effects of
CL and Vc. Starting guesses cannot be provided - but also are not
really needed as the estimation algorithms can do a good job on their
estimation.
covarianceModel = c("CL,Vc"),

...
)

example_7.R

Model specification
modelSpec1 <- modelSpec_IQRest(
...
covarianceModel = c("CL,Vc,Q1"),
...

)

Model specification
modelSpec1 <- modelSpec_IQRest(
...
covarianceModel = c("CL,Vc,Q1","Vp1,ka"),
...

)

▪ Dual PK models with 1st order, 0th order, and bolus/infusion administration

▪ Totally constructed example with 6 INPUTs and 2 OUTPUTs

▪ Translated to NONMEM ADVAN7 (optionally: ADVAN5)

********** MODEL STATES

d/dt(Ad) = - ka*Ad + FABS1*INPUT1
d/dt(Ac) = ka*Ad - Q1/Vc*Ac + Q1/Vp1*Ap1 - CL/Vc*Ac + FIV*INPUT2 + FABS0*INPUT3
d/dt(Ap1) = Q1/Vc*Ac - Q1/Vp1*Ap1

d/dt(A2d) = - ka2*A2d + F2ABS1*INPUT5
d/dt(A2c) = ka2*A2d - Q21/V2c*A2c + Q21/V2p1*A2p1 - CL2/V2c*A2c + F2IV*INPUT6 + F2ABS0*INPUT4
d/dt(A2p1) = Q21/V2c*A2c - Q21/V2p1*A2p1

********** MODEL VARIABLES

Cc = Ac/Vc
Cc2 = A2c/V2c

OUTPUT1 = Cc
OUTPUT2 = Cc2

example_8_model.txt

More than 1 INPUT on same compartment requires special setup of dataset for NONMEM

For MONOLIX the standard dataset format can be used.

▪ Define dosing

▪ Define model specification

Define dosing
This is a purely constructed example ... have a look at the example_8_model.txt file.
There are 6 INPUTn definitions. There are two cases of more than one INPUTn on the same
compartment.
dosing <- list(
INPUT1 = c(type="BOLUS",Tlag="Tlag1"),
INPUT2 = c(type="INFUSION"),
INPUT3 = c(type="ABSORPTION0",Tk0="Tk0",Tlag="Tlag3"),
INPUT4 = c(type="ABSORPTION0",Tk0="Tk02",Tlag="Tlag4"),
INPUT5 = c(type="BOLUS",Tlag="Tlag5"),
INPUT6 = c(type="INFUSION",Tlag="Tlag6")

)

Define model specification
modelSpec <- list(

POPvalues0 = c(CL = 1, Vc = 10, Q1 = 1, Vp1 = 10),

errorModel = list(
OUTPUT1 = c("absrel", c(abs0=1,rel0=0.3)),
OUTPUT2 = c("absrel", c(abs0=1,rel0=0.3))

)
)

example_8.R

example_8.R

▪ Modified dataset for NONMEM

▪ If more than one INPUT is defined on a compartment, then

▪ CMT column instead of YTYPE column needs to be present

▪ Number of output if observation, number of state to which to add dose if dosing

event.

▪ For MONOLIX this modification is not needed # Define data
data <- list(
datafile = "dataNLME_CMT.csv"

)

example_8.R

▪ IQR Tools output on the console supports the user in the correct data

specification

▪ Simple 1 compartment model

▪ Body weight (WT0) as

covariate on CL

▪ Implemented directly

in the structural model

▪ Individual values for

WT0 obtained from

WT0 column in the

dataset (regressor)

▪ Multiple regressors can be used

▪ Order of regressor definition needs to be the same (in dataset and model)

********** MODEL STATES

d/dt(Ad) = -ka*Ad + INPUT1
d/dt(Ac) = ka*Ad - CLcov/Vc*Ac

********** MODEL PARAMETERS

ka = 1 # Absorption rate parameter (1/hours)
CL = 3 # Apparent clearance (L/hours)
Vc = 60 # Apparent central volume (L)

betaCLWT0 = 0.75 # Covariate body weight on CL (.)
WT0 = 70 # Body weight provided as regressor from the data (kg)

********** MODEL VARIABLES

Define Covariate effect on CL
CLcov = CL * (WT0/70)^betaCLWT0

example_9_model.txt

▪ Definition of data and model specification to handle regressors

▪ This approach can handle ...

▪ Time dependent regressors / covariates also with EM based methods

▪ Any covariate relationships

▪ Passing individual PK parameters via the dataset for sequential PK/PD modeling

Define dataset
data <- data_IQRest(

datafile = "example_9_data.csv",
catNames = c("SEX"), # Vector defining categorical candidate covariate columns in dataset
regressorNames = c("WT0") # Implementation of covariate as regressor

)

Define model specification
modelSpec <- modelSpec_IQRest(

Implementation of covariate WT0 on CL by regressor in the model
Requires definition of covariate coefficient name as normal parameter
POPvalues0 = c(ka=1, CL=1, Vc=10, betaCLWT0=0.75),
POPestimate = c(ka=1, CL=1, Vc=1, betaCLWT0=1),
If sign for betaCLWT0 is known it is beneficial to implement it as
positive parameter, choosing "L" as distribution
IIVdistribution = c(ka="L", CL="L", Vc="L", betaCLWT0="L"),
Small IIV (here 5CV%) for betaCLWT0 - improves convergence
IIVvalues0 = c(ka=0.5, CL=0.5, Vc=0.5, betaCLWT0=0.05),
Do not estimate the IIV for betaCLWT0
IIVestimate = c(ka=1, CL=1, Vc=1, betaCLWT0=2),
errorModel = list(

OUTPUT1 = c("abs",0.3)
)

)

▪ Most model specification elements

covered

▪ Typical range of longitudinal

PK and PK/PD can be covered

▪ Remaining specification elements

relate to Bayes estimation in NONMEM

▪ Covered in later modules

1. How does IQR Tools handle MU referencing

2. How does IQR Tools handle sequential estimations (ITS -> SAEM -> IMP)

when preparing a NONMEM model file?

3. How to use IQR Tools to define initial conditions for the compartments in

model file?

4. Best practices on covariate selection

5. More complex examples on dataset preparation, e.g., urine data,

metabolite data, dataset with initial conditions, etc.

6. How can IQR Tools help with model validation and diagnostics, (pc-)VPC,

bootstraps

7. Auto-reporting of NONMEM / MONOLIX M&S results

▪ Each IQRnlmeProject/RESULTS folder contains post-processed estimation

results in CSV format

▪ Same format across supported estimation software (NONMEM, MONOLIX, NLMIXR)

▪ Allowing to easily implement custom analyses, tables, graphics

project: Path to an IQRnlmeProject folder

Get structural model

model <- getModel_IQRnlmeProject(project)

Get modeling dataset

data <- getData_IQRnlmeProject(project)

Get data.frame with individual parameter estimates (includes covariates)

param <- getIndivParameters_IQRnlmeProject(project)

Get data.frame with individual predictions

pred <- getIndivPredictions_IQRnlmeProject(project, FLAGcovariate = TRUE/FALSE)

Get data.frame with individual ETAs

eta <- getETAs_IQRnlmeProject(project, FLAGcovariate = TRUE/FALSE)

Sample parameters from an NLME project (same syntax as sample_GPF() described in Module 1.3)

samp <- sample_IQRnlmeProject(project, ...)

▪ Any number of IQRnlmeProject folders can be combined in

IQRnlmeProjectMulti objects

▪ Summary tables

▪ Function summary() can be used on IQRnlmeProjectMulti objects to generate 4

different summaries with different purposes (e.g., model development tables) -

ideally exported to files

Generate a multi object with selected NLME projects
pM1 <- as_IQRnlmeProjectMulti(c("Models/MODEL_01_MONOLIX/","Models/MODEL_01_NONMEM/"))

Generate a multi object with all NLME projects in a given folder
pM2 <- as_IQRnlmeProjectMulti("Models")

Generate a multi object with all NLME projects in a given folder and subfolders
pM3 <- as_IQRnlmeProjectMulti("..",FLAGrecursive = TRUE)

example_1.R

Generate a summary
summary(pM2,pathname = "Summary/pM2")

example_1.R

▪ Key models often need to be compared. The function

compareModels_IQRnlmeProjectMulti() supports this efficiently

Generate comparison tables
compareModels_IQRnlmeProjectMulti(pM2)

example_1.R

▪ The standard handling of covariates follows the MU referencing
implementation

Pi = invTrans(Trans(P) + betaCOV*log(COVi/REF) + betaCATx*(CATi==X) + ETAi)

▪ P: population mean value

▪ Trans(): Transformation defined by the distribution of the IIV

▪ invTrans(): Inverse transformation of Trans()

▪ COVi: individual continuous covariate

▪ REF: reference / centering value for continuous covariate

▪ CATi: individual categorical covariate

▪ X: categorical covariate value (different from reference group)

▪ ETAi: Individual random effect

Continuous covariate

implementation. Multiple

additive terms for multiple

continuous covariates

Categorical covariate

implementation. Multiple

additive terms for multiple

levels of a categorical

covariate and/or multiple

categorical covariates

▪ Intentional transformation of continuous covariates (log(COVi/REF))

Pi = invTrans(Trans(P) + betaCOV*log(COVi/REF) + ETAi)

▪ Ensures that for log-normally distributed parameters (Trans()=log()) the following
covariate relationship is implemented:

Pi = P * (COVi/REF)^betaCOV * exp(ETAi)

▪ Important:

▪ MU referencing based implementation of covariates is very beneficial for convergence

▪ EM based methods only allow handling of time-independent covariates

▪ NONMEM FO/CE/I will take into account time-dependency - but not SAEM or BAYES

▪ Covariate relationships that cannot be implemented using this approach can always be
coded in the structural model - passing the covariates as regressors

▪ Covariate coefficients then are considered normal parameters to be defined in
POPvalues0, etc. (see Example 9)

▪ With SAEM care needs to be taken to allow for fixed small IIV on resulting covariate
coefficient parameters - when estimated

▪ Different methods for BLOQ handling are handled via the dataset (see Module

2.1)

▪ If M3 or M4 methods was chosen during generation of the dataset format,

then the CENS column in the dataset is populated in the same way

▪ When generating an IQRnlmeProject

▪ By default, the M3 method is used

▪ The M4 method can be chosen through the optional argument algOpt.NONMEM.M4

IQRnlmeProject(algOpt.NONMEM.M4 = TRUE, ...)

▪ The choice between M3 and M4 only exists for NONMEM projects

▪ Tool independent

▪ NONMEM

▪ MONOLIX

Detailed documentation in the help to IQRnlmeProject()

▪ Generated NONMEM or MONOLIX models can be executed outside IQR Tools

▪ Interesting use case:

▪ Generate MONOLIX NLME project

▪ Open MONOLIX GUI, load generated NLME project

▪ Assess initial guesses graphically, perform a first quick estimation

▪ Update initial guesses

▪ Generate NONMEM NLME project

▪ Estimate in NONMEM

▪ IQR Tools generated control files could be modified post generation

▪ Allowing to implement specific settings of interest that are not readily

supported by IQR Tools NLME API

▪ Parallel NONMEM runs (using more than 1 core) with EM methods lead to

different parameter estimates for each model run (same model, same initial

guesses, same seed, same dataset, same computer, same compiler, etc.)

▪ Differences can be substantial!

▪ Through special settings IQR Tools and IQdesktop are able to limit the

differences to a bare minimum

▪ Dedicated webinar of NONMEM reproducibility planned for later

▪ MONOLIX >= 2019R1 is supported

▪ Since MONOLIX 2019R2 a bug is present in MONOLIX

which can lead to MONOLIX models exported from IQR

Tools not being correctly read (even though correct

MONOLIX syntax is used)

▪ Work around 1: Use MONOLIX 2019R1

▪ Work around 2: Set FLAGanalytic=FALSE in call to IQRnlmeProject

▪ Work around 3: Wait for MONOLIX 2021R1

▪ Easy setup and execution of NLME parameter estimation problems

▪ Automatic post-processing of results allows direct assessment of results to

inform the subsequent modeling steps

▪ Encapsulation of NLME estimation problems in single folders (NLME

Projects) allows structured storage

▪ Easy switching between tools (NONMEM, MONOLIX, NLMIXR) - no expert

knowledge in setting up NONMEM control streams or MONOLIX MLXTRAN

files required

▪ => Focus on expertise in NLME modeling, rather than in NONMEM or MONOLIX

	Slide 1
	Slide 2: Q&A during Webinar
	Slide 3
	Slide 4: Outline
	Slide 5: Background
	Slide 6: Overview of Webinar Series by IntiQuan IntiQuan Webinar Series on efficient support of Model Informed Drug Development (MIDD)
	Slide 7: General IQR Tools approach at NLME modeling
	Slide 8: Goals of this module
	Slide 9: Download of webinar material
	Slide 10: Modules 2.2, 2.3, & 2.4 require presence of NONMEM and/or MONOLIX on the system to fully run the examples
	Slide 11: Complete workflow system Freely available
	Slide 12
	Slide 13: Structural model definition Example 1
	Slide 14: Data definition Example 1
	Slide 15: Dosing definition Example 1
	Slide 16: Dosing definition - Example with all general possibilities
	Slide 17: Additional model specification Example 1
	Slide 18: Additional model specification - more in detail Example 1
	Slide 19: Additional model specification - more in detail Example 1
	Slide 20: Additional model specification - more in detail Example 1
	Slide 21: Additional model specification - more in detail Example 1
	Slide 22: Additional model specification - more in detail Example 1
	Slide 23: Additional model specification - more in detail Example 1
	Slide 24: Additional model specification
	Slide 25: Generation of an NLME Project Example 1
	Slide 26: Generation of an NLME Project Example 1
	Slide 27: IQRnlmeProject
	Slide 28: Looking at an IQRnlmeProject Example 1
	Slide 29: Execution of an NLME Project Example 1
	Slide 30: Results of an IQRnlmeProject run Example 1
	Slide 31: Results of an IQRnlmeProject run Example 1
	Slide 32: Results of an IQRnlmeProject run Example 1
	Slide 33: Summary
	Slide 34
	Slide 35: Example 1 - Basic
	Slide 36: Example 2 - Lag time & different error model
	Slide 37: Example 3 - 0 order absorption & different error model
	Slide 38: Example 4 - IOV
	Slide 39: Example 4 - IOV
	Slide 40: Example 5 - Covariates
	Slide 41: Example 5 - Covariates
	Slide 42: Example 6 - Covariates with more control
	Slide 43: Example 7 - Correlation of random effects
	Slide 44: Example 8 - Multi-INPUT & Multi-OUTPUT
	Slide 45: Example 8 - Multi-INPUT & Multi-OUTPUT
	Slide 46: Example 8 - Multi-INPUT & Multi-OUTPUT
	Slide 47: Example 8 - Multi-INPUT & Multi-OUTPUT
	Slide 48: Example 9 - Use of regressor from the dataset Application for custom covariate relationship in structural model
	Slide 49: Example 9 - Use of regressor from the dataset Application for custom covariate relationship in structural model
	Slide 50: Summary
	Slide 51: Special elements
	Slide 52
	Slide 53: Results CSV files
	Slide 54: Functions allowing to access key information in an IQRnlmeProject
	Slide 55: Summary tables and IQRnlmeProjectMulti object
	Slide 56: Model comparison based on IQRnlmeProjectMulti objects
	Slide 57: Implementation of covariates
	Slide 58: Implementation of covariates
	Slide 59: BLOQ handling
	Slide 60: Optional control arguments of IQRnlmeProjects Showing default settings
	Slide 61: Running NLME models outside of IQR Tools
	Slide 62: Modification of generated control files
	Slide 63: NONMEM reproducibility
	Slide 64: Supported MONOLIX versions
	Slide 65: Conclusions
	Slide 66: Conclusions
	Slide 67: Outlook webinar modules
	Slide 68: Overview of Webinar Series by IntiQuan IntiQuan Webinar Series on efficient support of Model Informed Drug Development (MIDD)
	Slide 69: Q&A session
	Slide 70: Thank You
	Slide 71: Contact information

